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Abstract

Free vibration analysis of thin annular plate with thickness varying monotonically in arbitrary power
form is presented. Transformation of variable is introduced to translate the governing equation for the free
vibration of thin annular plate into a fourth-order generalized hypergeometric equation. The analytical
solutions in terms of generalized hypergeometric function taking either logarithmic or non-logarithmic
forms are proposed, which encompass existing published solutions as special cases. To illustrate the use of
the closed form solutions presented, free vibration analyses of a thin annular ultra-high-molecular weight
polyethylene and a steel plate with linear and nonlinear thickness variation are performed. The results are
compared with those from FE analysis based on Kirchhoff thin plate theory and 3D elasticity theory
indicating good agreement.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The transverse vibration of plates of various shapes has been studied by many researchers over
a long period of time owing to its wide applications in engineering design. The simplicity and
see front matter r 2004 Elsevier Ltd. All rights reserved.
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widespread use of circular plates are borne by the many publications on their behavior under
different boundary conditions. For circular plate with uniform thickness, Airey [1] and
Carrington [2] gave exact solutions in terms of Bessel functions. Other related references may
be found in the well-known work of Leissa [3] and his subsequent articles [4–9].

While considerable work has been done on vibration of circular plates with uniform
thickness, there is no lack of publications on the vibration of thin circular and annular plates with
variable thickness either. Since the response of a plate with non-uniform thickness can be
formulated as a set of differential equations with variable coefficients, many approximate
solutions have been proposed. Raleigh–Ritz method has been applied to obtain approximate
frequencies and mode shapes of circular annular plate with various forms of thickness variations
[10–15]. Perturbation method [16] has been employed in analyzing the axi-symmetric free
vibration of a circular plate with arbitrary but slow variation in thickness. The generalized
differential quadrature rule (GDQR) was utilized by Wu and Liu [17] for the free vibration
of solid circular plates with variable thickness and elastic constants. In their work, the thickness
of the circular plates can vary radially in specific continuous form such as exponential and
linear form. However, relatively few analytical solutions are available for plates with variable
thickness. Analytical solutions in terms of Bessel functions for axi-symmetric vibrations of
circular plate with linear varying thickness and Poisson ratio m ¼ 1=3 were given by Conway et al.
[18]. Exact closed form solutions, in terms of the power of the radius, were obtained by Lenox et
al. [19] for the transverse vibrations of a thin annular plate having a parabolic thickness variation.
Wang [20] gave a power series solution method for the axi-symmetric vibration of a thin annular
plate whose thickness is constant in the circumferential direction but varies arbitrary in the
radial direction.

In this paper, the free vibration analysis of thin annular plate with thickness varying
monotonically in the radial direction in arbitrary power form is presented. Transformation
of variable is introduced such that the governing equation for the free vibration of vary-
ing thickness in power form can be transformed into a fourth-order generalized hyper-
geometric equation. The corresponding analytical solution in terms of generalized hypergeometric
function is proposed, which encompass existing published solutions as special cases. As an
illustration, the free vibration solutions of thin annular plate with three types of thickness
variations based on the presented solutions are discussed, namely, variation with power of (a) 1
(i.e. linearly increasing thickness), (b) 1=2 (nonlinear increasing thickness), and (c) �1=2
(nonlinear decreasing thickness). The results are compared with those from three-dimensional
(3D) finite element method (FEM).
2. Transformation of governing equation

Consider an annular plate generated by rotating the line z ¼ �1
2

h0ðr=aÞm about the z-axis,
0obprpa; where b and a are the inner and outer radius of the plate, respectively, m is a positive
real number and h0 is the maximum thickness which occurs at the outer radius of the annular
plate. When mo0; the rotating line is modified as z ¼ �1

2
h0ðr=bÞm; where the method of analysis is

the same as that when m40 by replacing ‘a’ with ‘b’; hence, only the case m40 is presented
herein. The governing equation using the cylindrical coordinate system for the free vibration of
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such thin annular plate can be expressed as [19]

r4
q4w

qr4
þ ð6m þ 2Þr3

q3w

qr3
þ r2 ð9m2 þ 3mmþ 3m � 1Þ

q2w

qr2
þ 2

q4w

qy2qr2

� �

þ r ð9m2 � 3mm� 3m þ 1Þ
qw

qr
þ ð6m � 2Þ

q3w

qy2qr

� �

þ ð9m2m� 9m � 3mmþ 4Þ
q2w

qy2
þ

q4w

qy4
þ

12rð1� m2Þa4

Eh2
0

r

a

� �4�2m q2w

qt2
¼ 0; ð1Þ

where E is Young’s modulus, m the Poisson ratio and w the transverse displacement of the plate.
Assume the displacement takes on the separable form:

wðr; y; tÞ ¼ zðrÞeipyeiot: (2)

Substituting Eq. (2) into Eq. (1) leads to a homogeneous linear ordinary differential equation with
variable coefficients

r4
d4z

dr4
þ ð6m þ 2Þr3

d3z

dr3
þ r2ð9m2 þ 3mmþ 3m � 1 � 2p2Þ

d2z

dr2

þ r½ð9m2 � 3mm� 3m þ 1Þ � ð6m � 2Þp2�
dz

dr

þ p4 � ð9m2m� 9m � 3mmþ 4Þp2 �
12rð1 � m2Þa4o2

Eh2
0

r

a

� �4�2m

" #
zðrÞ ¼ 0: ð3Þ

Solutions for specific simplified forms of Eq. (3) have been presented in published literature. When
m ¼ 0 (i.e. uniform thickness), Eq. (3) takes on the usual Bessel function solutions. When m ¼ 1
(i.e. linearly varying thickness), p ¼ 0 (axi-symmetric vibration), and m ¼ 1=3; Eq. (3) can be
simplified to a fourth-order Bessel equation [18]. When m ¼ 2 (i.e. parabolic thickness variation),
Eq. (3) can be simplified to a fourth-order Euler equation [19]. There appears to be no other
published closed form solutions for annular plate with thickness varying in power form with
arbitrary constants. In this paper, a variable transformation is defined such that Eq. (3) can be
transformed into a fourth-order generalized hypergeometric equation, which covers all cases,
except for m ¼ 2; given by

x ¼
1

ð4 � 2mÞ
4

o
o0

� �2
r

a

� �4�2m

; (4)

where

o0 ¼
h0

a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

12rð1� m2Þ

s
:

Through this transformation, Eq. (3) can be written as

1 �
1

x

Y4
i¼1

ðWþ gi � 1Þ

( )
zðxÞ ¼ 0; (5)
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where

W ¼ x
q
qx

and

gi ¼ 1 �
ai

2m � 4
; i ¼ 1 . . . 4;

a1; a2 ¼ �1þ
3

2
m 	

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1 þ 2

ffiffiffiffiffiffi
D2

pq
;

a3; a4 ¼ �1þ
3

2
m 	

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1 � 2

ffiffiffiffiffiffi
D2

pq
;

D1 ¼ 9m2 � 6ð1 þ mÞm þ 4ð1þ p2Þ;

D2 ¼ ð9ð1� mÞ2 þ 36mp2Þm2 � 24ð1 þ mÞp2m þ 16p2: (6)
3. Closed form solutions

Eq. (5) is a generalized hypergeometric equation. According Frobenius theory, if no two values
of gi are equal or differ by an integer value, the solutions of Eq. (5) are non-logarithmic and may
be written in the form [21,22]

z1ðxÞ ¼ x1�g1
0F3ð½ �; ½1 þ g2 � g1; 1 þ g3 � g1; 1 þ g4 � g1�; xÞ;

z2ðxÞ ¼ x1�g2
0F3ð½ �; ½1 þ g1 � g2; 1 þ g3 � g2; 1 þ g4 � g2�; xÞ;

z3ðxÞ ¼ x1�g3
0F3ð½ �; ½1 þ g1 � g3; 1 þ g2 � g3; 1 þ g4 � g3�; xÞ;

z4ðxÞ ¼ x1�g4
0F3ð½ �; ½1 þ g1 � g4; 1 þ g2 � g4; 1 þ g3 � g4�; xÞ; ð7Þ

where 0F3ð½ �; ½1þ g2 � g1; 1þ g3 � g1; 1þ g4 � g1�;xÞ is the generalized hypergeometric function.
The series form of the function pFq is given by

pFqð½a1; a2; . . . ; ap�; ½b1; b2; . . . ; bq�;xÞ ¼ 1þ
X1
k¼1

Qp
i¼1 ðaiÞkxkQq
j¼1 ðbjÞkk!

; (8)

where

ðaiÞk ¼
Gðai þ kÞ

GðaiÞ
¼ aiðai þ 1Þ � � � ðai þ k � 1Þ:

The complete solution of Eq. (5) can be expressed as

zðxÞ ¼
X4

i¼1

ciziðxÞ; (9)
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where ci are non-zero constants. Since the infinite series of Eq. (8) converges for all finite x if ppq

[23], the solutions given by Eq. (7) are convergent.
If only l numbers (l ¼ 2; 3 or 4 in the case plate vibration) of gi are equal or differ by an integer

value, there is no loss of generality in taking l numbers of gi’s as g1; g2; . . . ; gl; arranged with their
real parts in ascending order. Under these conditions, according to the theory of Frobenius [22],
the solutions zjðxÞ ð j ¼ 1; lþ 1; . . . ; 4Þ of Eq. (5) are given by Eq. (7) with the remaining zjðxÞ ð j ¼

2; . . . ; lÞ in logarithmic form. The detailed derivations of the logarithmic solutions are presented
in Appendix A. The results for three cases, which span all possible combinations of gi; are given as
follows:

(I) When two gi’s are equal or differ by an integer value: Under this case, l ¼ 2: Then z1ðxÞ; z3ðxÞ and
z4ðxÞ are non-logarithmic solution expressed by Eq. (7). The logarithmic solution, z2ðxÞ; is given by

z2ðxÞ ¼ z1ðxÞ ln x þ x1�g1
X1
s¼0

C10
0s xs

Y4
i¼1

Gð1 � g1 þ giÞ

Gð1� g1 þ gi þ sÞ

þ
Y4
i¼2

ðgi � g1Þ
1

xg1 5F0 ½1; 1; 1þ g1 � g2; 1þ g1 � g3; 1þ g1 � g4�; ½ �;
1

x

� �
; ð10Þ

where Cij
nk is listed in Appendix A.

(II) When three gi’s are equal or differ by an integer value: Under this case, l ¼ 3: Then z1ðxÞ and
z4ðxÞ are non-logarithmic solutions given by Eq. (7). There are two logarithmic solutions, namely
z2ðxÞ given by Eq. (10), and z3ðxÞ which is given by

z3ðxÞ ¼ 2z̄2ðxÞ ln x � z1ðxÞln
2 x þ x1�g1

X1
s¼0

½ðC20
0s Þ

2
þC20

1s þ 2p2�xs

Q4
i¼1 Gð1 � g1 þ giÞQ4

i¼1 Gð1� g1 þ gi þ sÞ

þ 2x1�g2
Xg2�g1

s¼1

ð�1Þ1�sGðsÞC21
0s x�s

Y4
i¼2

Gð1� g1 þ giÞ

Gð1 � g1 þ gi � sÞ

þ 2ð�1Þg1þg2Gð1 � g1 þ g2Þ
Q4

i¼2 Gð1 � g1 þ giÞQ4
i¼3 Gðgi � g2Þ

�x�g2
5F0 ½1; 1; 1 þ g2 � g1; 1 þ g2 � g3; 1þ g2 � g4�; ½ �;

1

x

� �
; ð11Þ

where z̄2ðxÞ is listed in Appendix A.
(III) When four gi’s are equal or differ by an integer value: Under this case, l ¼ 4: Then z1ðxÞ is

the only non-logarithmic solution given by Eq. (7). There are three logarithmic solutions, namely
z2ðxÞ given by Eq. (10), z3ðxÞ by Eq. (11) and z4ðxÞ which is given by

z4ðxÞ ¼ z1ðxÞln
3 x � 3¯̄z2ðxÞln

2 x þ 3z̄3ðxÞ ln x þ
6ð�1Þg1þg2

Gðg4 � g3Þ

Y4
i¼2

Gð1� g1 þ giÞ

�
Y2
i¼1

Gð1 � gi þ g3Þx
�g3

5F0 ½1; 1; 1þ g3 � g1; 1þ g3 � g2; 1þ g3 � g4�; ½ �;
1

x

� �
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þ 6ð�1Þg1þg2x1�g2
Y4
i¼2

Gð1� g1 þ giÞ
Xg3�g2

s¼1

Gðg2 � g1 þ sÞGðsÞC32
0s x�sQ4

i¼3 Gð1þ gi � g2 � sÞ

þ 3x1�g1
Xg2�g1

s¼1

GðsÞð�1Þ1�sx�s½ðC31
0s Þ

2
þC31

1s þ 2p2�
Y4
i¼2

Gð1� g1 þ giÞ

Gð1 � g1 þ gi � sÞ

þ x1�g1
X1
s¼0

xs½ðC30
0s Þ

3
þC30

2s þ 3C30
0s ðC

30
1s þ 3p2Þ�

Y4
i¼1

Gð1� g1 þ giÞ

Gð1 � g1 þ gi þ sÞ
; ð12Þ

where ¯̄z2ðxÞ and z̄3ðxÞ are listed in Appendix A.

4. Some special cases

The generalized hypergeometric function is of a very general form, and encompasses many
other special functions. Thus the proposed solutions can be reduced to other types of special
functions for certain combinations of the parameters m; p; and m: To compare the present
solutions with existing published results, some special cases are considered.

First consider a uniform plate, that is m ¼ 0; for which

g1 ¼
1

2
�

p

4
; g2 ¼

1

2
þ

p

4
; g3 ¼ 1 �

p

4
; g4 ¼ 1 þ

p

4
: (13)

It can be shown that

g1 ¼ g2 � n

g3 ¼ g4 � n

)
if p is odd;

g1 ¼ g4 � n

g3 ¼ g2 � n

)
if p is even;

(14)

where n is a non-negative integer.
Thus whenever p is odd or even, z1ðxÞ and z3ðxÞ are always of non-logarithmic form given by

Eq. (7) while z2ðxÞ and z4ðxÞ are always of logarithmic form given by Eq. (10). For purpose of
simplification, the relationship between hypergeometric functions z1ðxÞ; z3ðxÞ and Bessel function
are shown in the following.

Substituting Eq. (13) into Eq. (7) gives

z1ðxÞ ¼ xð1=2þðp=4ÞÞ
0F3 ½ �; 1 þ

p

4
;
3

2
;
3

2
þ

p

4

� �
; x

� �

¼
ðp þ 1Þ!

2ðpþ2Þ

X1
k¼0

ð2x1=4Þ
½2ð2kþ1Þþp�

ð2k þ 1 þ pÞ!ð2k þ 1Þ!
; ð15Þ

z3ðxÞ ¼ xp=4
0F3 ½ �;

1

2
þ

p

2
;
1

2
; 1þ

p

2

� �
; x

� �

¼
p!

2p

X1
k¼0

ð2x1=4Þ
½2ð2kÞþp�

ð2k þ pÞ!ð2kÞ!
: ð16Þ
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The combination of Eqs. (15) and (16) may be re-written as a combination of the series

X1
k¼0

ð2x1=4Þ
ð2kþpÞ

ðk þ pÞ!ðkÞ!
and

X1
k¼0

ð�1Þkð2x1=4Þ
ð2kþpÞ

ðk þ pÞ!ðkÞ!
(17)

or in Bessel function form as

Ipð4x1=4Þ and Jpð4x1=4Þ (18)

where J is Bessel functions and I is modified Bessel functions of the first kind.
These Bessel function solutions of Eq. (5) considering variable transformation (4) are the

conventional solutions for uniform thickness plate [24]. The relationship between hypergeometric
functions z2ðxÞ; z4ðxÞ and Bessel functions can be similarly shown.

Another special case is for plate with linearly varying thickness. When m ¼ 1=3;m ¼ 1 (linearly
varying thickness) and p ¼ 0 (axi-symmetric vibration), the solution may be written in terms of
Bessel functions [18]. For this case, gi can be obtained according to Eq. (6) as g1 ¼ 1=2; g2 ¼ 3=2
g3 ¼ 1; g4 ¼ 2: Since g2 � g1 ¼ 1; g4 � g3 ¼ 1; z1ðxÞ and z3ðxÞ are of non-logarithmic form given by
Eq. (7). Substituting g1 ¼ 1=2; g2 ¼ 3=2; g3 ¼ 1; g4 ¼ 2 into Eq. (7) gives

z1ðxÞ ¼ x1=2
0F3 ½ �;

3

2
; 2;

5

2

� �
;x

� �
¼

3

2

X1
k¼0

ð4x1=2Þ
ð2kþ1Þ

ð2k þ 1Þ!ð2k þ 3Þ!
; (19)

z3ðxÞ ¼ 0F3 ½ �;
1

2
;
3

2
; 2

� �
; x

� �
¼

1

2

X1
k¼0

ð4x1=2Þ
ð2kÞ

ð2kÞ!ð2k þ 2Þ!
; (20)

z2ðxÞ and z4ðxÞ are of logarithmic form given by Eq. (10). Substituting g1 ¼ 1=2; g2 ¼ 3=2; g3 ¼
1; g4 ¼ 2 into Eq. (10) gives

z2ðxÞ ¼ z1ðxÞ ln x þ
ffiffiffi
x

p X1
s¼0

Y4
i¼1

G 1
2
þ gi

� �
C10

0s xs

G 1
2
þ gi þ s

� � þ
Y4
i¼2

gi �
1

2

� �
1ffiffiffi
x

p 5F0 1; 1; 0;
1

2
;�

1

2

� �
; ½ �

1

x

� �
:

(21)

To obtain z4ðxÞ; re-arrange gi in the order g1 ¼ 1; g2 ¼ 2; g3 ¼ 1=2; g4 ¼ 3=2 and substitute into
Eq. (10), giving

z4ðxÞ ¼ z3ðxÞ ln x þ
X1
s¼0

Y4
i¼1

GðgiÞC
10
0s xs

Gðgi þ sÞ
þ
Y4
i¼2

ðgi � 1Þ
1

x 5F0 1; 1; 0;
3

2
;
1

2

� �
; ½ �;

1

x

� �
: (22)

The combination of Eqs. (19) and (20) may be re-written as a combination of the series

X1
k¼0

ð4x1=2Þ
k

k!ðk þ 2Þ!
and

X1
k¼0

ð�1Þkð4x1=2Þ
k

k!ðk þ 2Þ!
(23)

or in Bessel function form as

J2ð4x1=4Þffiffiffi
x

p and
I2ð4x1=4Þffiffiffi

x
p : (24)
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In the same manner, the combination of the other two series in Eqs. (21) and (22) is a linear
combination of the solution

K2ð4x1=4Þffiffiffi
x

p and
Y 2ð4x1=4Þffiffiffi

x
p ; (25)

where Y is Bessel functions and K is modified Bessel functions, both of the second kind. These
Bessel function solutions of Eq. (5) considering variable transformation (4) are the forms
presented by Conway et al. [18].
5. Numerical examples

To check the correctness of the proposed solutions presented in the paper, the axi-symmetric
free vibration of a ultra-high molecular weight polyethylene (UHMWPE [25,26]) plate is studied
under two types of boundary conditions: C–C, F–C, where the first and second letter denotes the
edge condition at the inner and outer edge, respectively, and C denotes clamped and F denotes
free. The material properties and geometry of the UHMWPE plate are shown in Table 1. The
reason to choose such material and geometry is that for m ¼ 6=5;m ¼ �19=45 (negative Poisson
ratio) and p ¼ 0 (axi-symmetric vibration), gi according to Eq. (6) are g1 ¼ 0; g2 ¼ 1; g3 ¼ 2; g4 ¼
3; which is the most complex case in the proposed solutions, that is, the free vibration solutions
can be written in terms of one non-logarithmic form z1ðxÞ given by Eq. (7) and three logarithmic
forms z2ðxÞ; z3ðxÞ and z4ðxÞ given by Eqs. (10)–(12), respectively. A finite element model is also
prepared using ABAQUS 6.3 to assess the validity of the results provided by the analytical
approach. The annular plate of varying thickness with m ¼ 6=5 shown in Fig. 1 is represented by a
mesh of 13,659 triangular shell elements STRI3 which is based on Kirchhoff thin plate theory
(CPT). Lanczos iterative technique was adopted to compute the fundamental natural frequency of
the plate. The comparison between the analytical and numerical results is shown in Table 2. The
good agreement of less than 1% maximum difference indicates that the correctness of proposed
solutions in this paper, especially for the case of materials with negative Poisson’s ratio.

To investigate the application of the proposed solutions in conventional materials, consider an
annular steel plate where Young’s modulus, mass density and geometric parameters are listed in
Table 1. Fig. 1 plots the geometry of each annular plate and its corresponding FEM mesh (using
3D solid element with 20 nodes, C3D20R, and Lanczos iterative technique) with m ¼ 1 (linear
Table 1

Material and geometrical properties of annular plate

Steel UHMWPE [25]

Young’s module (Nm�2) 210� 109 3� 109

Mass density (kgm�3) 7800 800

Outer radius a (m) 1.0 1.0

Inner radius b (m) 0.1 0.5

Poisson ratio 0.3 � 19
45
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increasing thickness, 1242 elements), m ¼ 1=2 (nonlinear increasing thickness, positive power,
3195 elements), and m ¼ �1=2 (nonlinear decreasing thickness, negative power, 2880 elements).
The frequencies for free vibration of the above plate with 0–2 diametrical nodes and 0–2 nodal
circles are investigated using the solution of Eq. (7) and compare well with those from 3D FEM
obtained using ABAQUS 6.3, as summarized in Tables 3,4,5. For example, for m ¼ 1 (Table 3),
m ¼ 1=2 (Table 4), and m ¼ �1=2 (Table 5), the respective maximum errors of 2.4%, 6.8% and
3.4% occur at p ¼ 2 and n ¼ 2 under clamped–clamped boundary condition, respectively. Such
agreement shows that the proposed solutions based on CPT are closed to that from FE analysis
based on 3D elasticity theory.

The variation of the ratio of frequencies of varying cross section plates with the maximum
thickness h0 ¼ 1=15 to those of a plate with uniform thickness h0 ¼ 1=15 under clamped-clamped
boundary conditions is plotted in Fig. 2. The variation of the first two frequencies with the taper
(represented by the power of thickness function) of the plate is illustrated. When the power m is in
0 0.2 0.4 0.6 0.8 1 1.2

0

0.01

0.02

0.03

z 
(m

)

r (m)

Fig. 1. Geometry of annular plate with m ¼ 1; 1=2;�1=2; 6=5:

Table 2

Comparison of frequencies (Hz) of annular plate under C–C, F–C boundary conditions between CPT FEM and

proposed results for UHMWPE plate

n p C–Ca F–C

FEM Proposed Error ð%Þ FEM Proposed Error ð%Þ

0 0 61.991 62.037 0.07 20.102 20.123 0.10

1 166.42 168.04 0.96 76.381 76.609 0.30

2 324.10 326.97 0.88 182.70 183.74 0.57

p ¼ number of nodal diameters; n ¼ number of nodal circles; C ¼ clamped, F ¼ free.
aThe first letter denotes the condition at the inner edge.
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Table 3

Comparison of frequencies (Hz) of annular plate under C–C, F–C boundary conditions between 3D FEM and

proposed results for m ¼ 1 (linear increasing)

n p C–Ca F–C

FEM Proposed Error (%) FEM Proposed Error (%)

0 0 223.460 223.772 0.14 149.250 149.603 0.24

1 258.170 258.972 0.31 218.330 219.379 0.48

2 363.450 366.295 0.78 352.450 355.647 0.91

1 0 580.010 582.352 0.40 382.440 385.354 0.76

1 618.090 622.285 0.68 468.700 473.471 1.02

2 737.360 747.363 1.36 665.410 675.195 1.47

2 0 1097.600 1114.610 1.55 750.720 762.903 1.62

1 1136.600 1156.676 1.77 833.160 848.420 1.83

2 1257.900 1287.404 2.35 1055.90 1079.504 2.24

p ¼ number of nodal diameters; n ¼ number of nodal circles; C ¼ clamped, F ¼ free.
aThe first letter denotes the condition at the inner edge.

Table 4

Comparison of frequencies (Hz) of annular plate under C–C, F–C boundary conditions between 3D FEM and

proposed results for m ¼ 1=2 (nonlinear increasing)

n p C–Ca F–C

FEM Proposed Error (%) FEM Proposed Error (%)

0 0 302.120 306.027 1.29 153.210 153.859 0.42

1 336.990 342.054 1.50 273.710 276.750 1.11

2 459.550 468.545 1.96 444.780 452.562 1.75

1 0 821.290 849.045 3.38 491.620 499.910 1.69

1 869.350 900.462 3.58 670.370 688.640 2.73

2 1027.200 1069.060 4.08 956.330 989.164 3.43

2 0 1573.400 1669.238 6.09 1044.400 1081.779 3.58

1 1626.600 1728.966 6.29 1229.000 1286.276 4.66

2 1797.400 1919.878 6.81 1610.100 1699.110 5.53

p ¼ number of nodal diameters; n ¼ number of nodal circles; C ¼ clamped, F ¼ free.
aThe first letter denotes the condition at the inner edge.
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the range of �1 to 0, the thickness tapers from a value of h at the centre to a smaller value at the
circumference. The natural frequency, say oN ; will be lower than that of a uniform plate of
thickness h; say oU : As m increases from �1 to 0, the taper reduces until the plate thickness
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Table 5

Comparison of frequencies (Hz) of annular plate under C–C, C–F boundary conditions between 3D FEM and

proposed results for m ¼ �1=2 (nonlinear decreasing)

n p C–Ca C–F

FEM Proposed Error (%) FEM Proposed Error (%)

0 0 223.240 224.421 0.53 47.783 47.813 0.06

1 227.610 229.730 0.93 235.320 237.822 1.06

2 261.450 264.359 1.11 277.680 281.165 1.26

1 0 584.750 594.186 1.61 227.030 228.568 0.68

1 597.870 609.392 1.93 605.200 617.117 1.97

2 658.090 671.925 2.10 669.630 684.120 2.16

2 0 1112.500 1145.732 2.99 590.600 600.318 1.65

1 1132.200 1168.831 3.24 1139.100 1175.481 3.19

2 1212.400 1253.376 3.38 1222.500 1263.459 3.35

p ¼ number of nodal diameters; n ¼ number of nodal circles; C ¼ clamped, F ¼ free.
aThe first letter denotes the condition at the inner edge.
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Fig. 2. Frequency ratio (varying thickness to uniform plate) for different m:
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reaches h when m ¼ 0; implying that the natural frequency increases from oN to oU : This is
reflected in Fig. 2. Similarly, when the power m is in the range from 0 to 1, the thickness tapers
from h at the outer edge to a smaller value at the centre. The natural frequency, say oP; will be
lower than oU : As m decreases from 1 to 0, the taper reduces until the plate thickness reaches h
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when m ¼ 0; implying that the natural frequency increases from oP to oU : This is again consistent
with the results of Fig. 2. Since oP4oN as the plate is stiffer where more materials are
concentrated towards the circumference, it is consistent that the negative power of thickness
function have much effect on the frequencies of the plate than positive power. In addition, when
the inner radius b increases, the variation of the frequencies of the plate with negative power
varying thickness became larger while that of the plate with positive power varying thickness
decreases. This is because the mass of the plate with negative power varying thickness decreases
much more than that of the plate with positive power varying thickness with the increased inner
radius b: Another issue to note is the different convergence conditions of hypergeometric
functions under negative and positive powers. From Eqs. (7) and (A.46), one can see the rate of
convergence of hypergeometric function is dependent on these difference g1 ¼ g2 � g1; g2 ¼

g3 � g1 and g3 ¼ g4 � g1:
Fig. 3 plots the summation of gi ði ¼ 1; . . . ; 3Þ and their bi- and tri-product. For p ¼ 0; it is easy

to see the slowest convergence rate occurs at m near zero and such conclusion may not be hold for
p ¼ 1; and trial and error is necessary to ensure convergence. In this paper, all hypergeometric
functions are calculated using 20 items because the 21st item is less than 10�30 even for the slowest
convergence case.
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Fig. 3. Convergence conditions for different m and p (where g1 ¼ g2 � g1; g2 ¼ g3 � g1; g3 ¼ g4 � g1).
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6. Conclusions

The general analytical solutions in terms of generalized hypergeometric function for the free
vibration of thin annular plate with thickness varying monotonically in arbitrary power form are
presented, which includes published solutions as special cases. The solutions are verified by
comparing with those from Kirchoff-based and 3D FEM for plates with linear increasing,
nonlinear increasing and nonlinear decreasing thicknesses in the radial direction. The results are
consistent, indicating that the negative power of thickness function have much effect on the
frequencies of the plate than positive power. In addition, when the inner radius b increases, the
variation of the frequencies of the plate with negative power varying thickness became larger while
that of the plate with positive power varying thickness decreases. Although the solution technique
presented in this paper is based on Kirchhoff plate model, the same approach can be used to solve
the free vibration problem of thick plate with varying thickness based on Mindlin plate model.

Appendix A. Logarithmic solutions of generalized hypergeometric equation when p ¼ 0 and q ¼ 3

In Eq. (5), the generalized hypergeometric equation of p ¼ 0 and q ¼ 3; is an ordinary differential
equation with a regular singular point at the origin, and assume to have a solution of the form

zðxÞ ¼
X1
k¼0

ckxrþk; c0a0: (A.1)

Substituting Eq. (A.1) into Eq. (5) yields

X1
k¼0

ck xrþk �
Y4
i¼1

ðrþ k þ gi � 1Þxrþk�1

" #

¼
X1
k¼1

ck�1 � ck

Y4
i¼1

ðrþ k þ gi � 1Þ

" #
xrþk�1 � c0

Y4
i¼1

ðrþ gi � 1Þxr�1: ðA:2Þ

Then, the indicial equation (or characteristic equation) is

c0

Y4
i¼1

ðr� 1 þ giÞ ¼ 0: (A.3)

Since c0a0; Eq. (A.3) yields four values of r; namely,

ri ¼ 1 � gi; i ¼ 1 . . . 4: (A.4)

The coefficients ck satisfy the recurrence formula

ck ¼
ck�1Q4

i¼1ðrþ k � 1þ giÞ
; (A.5)

which leads to

ck ¼ c0

Y4
i¼1

Gðr� 1 þ giÞ

Gðr� 1þ gi þ kÞ
: (A.6)
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Let c0 ¼ 1 and substitute Eq. (A.6) into Eq. (A.1) gives

zðxÞ ¼
X1
k¼0

xrþk
Y4
i¼1

Gðrþ giÞ

Gðrþ gi þ kÞ
: (A.7)

If no two values of gi are equal or differ by an integer, from Eq. (A.7), the various solutions may be
obtained by setting r equal to the roots of Eq. (A.4). This leads to Eq. (7).

If only l numbers (l ¼ 2; 3 or 4 in the case plate vibration) of gi are equal or differ by an integer
(as discussed in Section 3), Eq. (5) has l� 1 logarithmic solutions. For the case of vibration of
plate, the largest value of l is 4. When l is 2, the logarithmic solutions have been given by Smith
[22], MacRobert [27] and Wang [28]. The logarithmic solutions are derived here for l equal to 3 or
4. For completeness, the solutions for l ¼ 2 are also presented. Thus, z2ðxÞ; z3ðxÞ; z4ðxÞ can be
written according to the theory of Frobenius [22] as

z2ðxÞ ¼ v0ðrÞr¼1�g2 ¼
X1
k¼0

f kðGÞx
rþkðc0 ln x þ g1

kÞ; (A.8)

z3ðxÞ ¼ v00ðrÞr¼1�g3 ¼
X1
k¼0

f kðGÞx
rþkðc0 ln2 x þ 2g1

k ln x þ g2
kÞ; (A.9)

z4ðxÞ ¼ v000ðrÞr¼1�g4 ¼
X1
k¼0

f kðGÞx
rþkðc0 ln3 x þ 3g1

k ln2 x þ 3g2
k ln x þ g3

kÞ; (A.10)

where

vðrÞ ¼ c0ðrÞ
X1
k¼0

f kðGÞx
rþk;

c0ðrÞ ¼ c00ðrþ gr � 1Þl�1;

f kðGÞ ¼
Y4
i¼1

Gðrþ giÞ

Gðrþ gi þ kÞ
;

g1
k ¼

qc0

qr
þ Fij

0kc0;

g2
k ¼

q2c0

q2r
þ 2Fij

0k

qc0

qr
þ ½ðFij

0kÞ
2
þ Fij

0k�c0;

g3
k ¼

q3c0

q3r
þ 3Fij

0k

q2c0

q2r
þ 3½ðFij

0kÞ
2
þ Fij

1k�
qc0

qr
þ ½ðFij

0kÞ
3
þ 3Fij

0kF
ij
1k þ Fij

2k�c0;

Fij
nk ¼ Cij

nk þ
Xj

t¼1

p
qn

qnr
cot pðrþ gt þ kÞ �

Xi

t¼1

p
qn

qnr
cot pðrþ gtÞ;
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Cij
nk ¼

X4

t¼1þi

jnðrþ gtÞ þ
Xi

t¼1

ð�1Þnjnð1� r� gtÞ �
X4

t¼1þj

jnðrþ gt þ kÞ

�
Xj

t¼1

ð�1Þnjnð1� r� gt � kÞ; n ¼ 0; 1; 2; i; j ¼ 0; 1; 2; 3; ðA:11Þ

jnðzÞ is a polygamma function.
In the above development, the following formula has been used:

jnð1 � zÞ þ ð�1Þnþ1jnðzÞ ¼ ð�1Þnp
dn

dzn
cot pz; n ¼ 0; 1; 2 . . . : (A.12)

The logarithmic solutions of Eqs. (A.8)–(A.10) are in a general form which cannot be used
directly. The specific forms are be derived in the following:

A.1. z2ðxÞ

Under this case, c0 ¼ c00ðrþ g2 � 1Þ; where c00 is an arbitrary constant independent of r; and
z2ðxÞ consists of two parts depending on the range of k: When kXg2 � g1; using the relation

GðzÞGð1� zÞ ¼
p

sin pz
; (A.13)

where z is an arbitrary complex number, gives

f kðGÞr¼1�g2 ¼

Q4
i¼2 Gðrþ giÞQ4

i¼1 Gðrþ gi þ kÞ

1

rþ g2 � 1
lim

r!1�g2
Gðrþ g1Þðrþ g2 � 1Þ

¼

Q4
i¼2 Gð1 � g2 þ giÞQ4

i¼1 Gð1� g2 þ gi þ kÞ

ð�1Þ1�g2þg1

Gðg2 � g1Þ
1

rþ g2 � 1
; ðA:14Þ

1

rþ g2 � 1
c0

� �
r¼1�g2

¼ c00: (A.15)

The coefficient of ln x in Eq. (A.8) can be calculated as follows:

X1
k¼g2�g1

f kðGÞx
rþkc0

 !
r¼1�g2

¼ c00
ð�1Þ1�g2þg1

Q4
i¼2 Gð1� g2 þ giÞ

Gðg2 � g1Þ
Q4

i¼1 Gð1� g1 þ giÞ
z1ðxÞ; (A.16)

c00 is chosen to make the coefficient of z1ðxÞ equal to 1. That is,

c00 ¼
Gðg2 � g1Þ

Q4
i¼1 Gð1 � g1 þ giÞ

ð�1Þ1�g2þg1
Q4

i¼2Gð1� g2 þ giÞ
: (A.17)
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Since 1

rþ g2 � 1
g1

k

� �
r¼1�g2

¼
c00

rþ g2 � 1
þ c00F

10
0k

¼
c00

rþ g2 � 1
þ c00ðC

10
0k � p cot pðrþ 1ÞÞ

¼ c00C
10
0k ðA:18Þ

the non-logarithmic terms in Eq. (A.8) can be obtained:X1
k¼g2�g1

f kðGÞx
rþkg1

k

 !
r¼1�g2

¼
X1
s¼0

f sðGÞx
rþg2�g1þsc00C

10
0s

¼ x1�g1
X1
s¼0

C10
0s xs

Y4
i¼1

Gð1 � g1 þ giÞ

Gð1� g1 þ gi þ sÞ
: ðA:19Þ

When 0pkpg2 � g1 � 1;

f kðGÞr¼1�g2 ¼
Y4
i¼2

Gðrþ giÞ

Gðrþ gi þ kÞ
lim

r!1�g2

Gðrþ g1Þ
Gðrþ g1 þ kÞ

¼ ð�1Þk
Y4
i¼2

Gð1� g2 þ giÞ

Gð1 � g2 þ gi þ kÞ

Gðg2 � g1 � kÞ

Gðg2 � g1Þ
; ðA:20Þ

ðg1
kÞr¼1�g2 ¼ c00 þ c00ðrþ g2 � 1ÞF11

0k

¼ c00 þ c00ðrþ g2 � 1Þ C11
0k þ lim

r!1�g2
ðp cot pðrþ 1 þ kÞ � p cot pðrþ 1ÞÞ

� �
¼ c00 þ c00ðrþ g2 � 1ÞC11

0k

¼ c00 ðA:21Þ

then Xg2�g1�1

k¼0

f kðGÞx
rþkg1

k ¼
Xg2�g1

s¼1

f sðGÞx
rþg2�g1�sg1

s

¼
Y4
i¼2

ðgi � g1Þ

�
1

xg1 5F0 ½1; 1; 1 þ g1 � g2; 1þ g1 � g3; 1þ g1 � g4�; ½ �;
1

x

� �
; ðA:22Þ

ðc0Þr¼1�g2 ¼ c00ðrþ g2 � 1Þ ¼ 0: (A.23)

Hence

z2ðxÞ ¼ z1ðxÞ ln x þ x1�g1
X1
s¼0

C10
0s xs

Y4
i¼1

Gð1 � g1 þ giÞ

Gð1� g1 þ gi þ sÞ

þ
Y4
i¼2

ðgi � g1Þ
1

xg1 5F0 ½1; 1; 1þ g1 � g2; 1þ g1 � g3; 1þ g1 � g4�; ½ �;
1

x

� �
: ðA:24Þ
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A.2. z3ðxÞ

Under this case c0 ¼ c00ðrþ g3 � 1Þ2 where c00 is an arbitrary constant independent of r:
For kXg3 � g1; the coefficient of ln2 x in Eq. (A.9) can be calculated using

X1
k¼g3�g1

f kðGÞx
rþkc0

 !
r¼1�g3

¼
X1
s¼0

f sðGÞx
rþg3�g1þsc0

 !
r¼1�g3

¼
c00ð�1Þg2þg1Gð1 � g3 þ g4ÞQ4

i¼1 Gð1 � g1 þ giÞ
Q2

i¼1Gðg3 � giÞ
z1ðxÞ; ðA:25Þ

c00 is chosen by making the coefficient of z1ðxÞ equal to 1:

c00 ¼

Q4
i¼1 Gð1� g1 þ giÞ

Q2
i¼1 Gðg3 � giÞ

ð�1Þg2þg1Gð1 � g3 þ g4Þ
(A.26)

then

X1
k¼g3�g1

f kðGÞx
rþkg1

k

 !
r¼1�g3

¼
X1
s¼0

f sðGÞx
rþg3�g1þsg1

s

 !
r¼1�g3

¼ x1�g1
X1
s¼0

C20
0s xs

Q4
i¼1 Gð1� g1 þ giÞQ4

i¼1Gð1� g1 þ gi þ sÞ
; ðA:27Þ

X1
k¼g3�g1

f kðGÞx
rþkg2

k

 !
r¼1�g3

¼
X1
s¼0

f sðGÞx
rþg3�g1þsg2

s

 !
r¼1�g3

¼ x1�g1
X1
s¼0

½ðC20
0s Þ

2
þC20

1s þ 2p2�xs

Q4
i¼1Gð1 � g1 þ giÞQ4

i¼1Gð1 � g1 þ gi þ sÞ
: ðA:28Þ

When g3 � g2pkpg3 � g1 � 1;

Xg3�g1�1

k¼g3�g2

f k ðGÞx
rþkg1

k

 !
r¼1�g3

¼
Xg2�g1

s¼1

f sðGÞx
rþg3�g1�sg1

s

 !
r¼1�g3

¼
Y4
i¼2

ðgi � g1Þ
1

xg1 5F0 ½1; 1; 1 þ g1 � g2; 1 þ g1 � g3; 1þ g1 � g4�; ½ �
1

x

� �
;

ðA:29Þ

Xg3�g1�1

k¼g3�g2

f k ðGÞx
rþkg2

k

 !
r¼1�g3

¼
Xg2�g1

s¼1

f sðGÞx
rþg3�g1�sg2

s

 !
r¼1�g3

¼ 2x1�g2
Xg2�g1

s¼1

C21
0s x�s ð�1Þ1�sGðsÞ

Q4
i¼2 Gð1� g1 þ giÞQ4

i¼2 Gð1 � g1 þ gi � sÞ
: ðA:30Þ
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When 0pkpg3 � g2 � 1;

Xg3�g2�1

k¼0

f kðGÞx
rþkg2

k

 !
r¼1�g3

¼
Xg3�g2

s¼1

f sðGÞx
rþg3�g2�sg2

k

 !
r¼1�g3

¼ 2ð�1Þg1þg2Gð1� g1 þ g2Þ
Q4

i¼2 Gð1 � g1 þ giÞQ4
i¼3 Gðg1 � g2Þ

�
1

xg2 5F0 ½1; 1; 1þ g2 � g1; 1þ g2 � g3; 1þ g2 � g4�; ½ �;
1

x

� �
:

ðA:31Þ

Then z3ðxÞ can be expressed as

z3ðxÞ ¼
X1
k¼0

f kðGÞx
r3þkðc0 ln2 x þ 2g1

k ln x þ g2
kÞ

¼ 2z̄2ðxÞ ln x � z1ðxÞln
2 x þ x1�g1

X1
s¼0

½ðC20
0s Þ

2
þC20

1s þ 2p2�xs

Q4
i¼1 Gð1� g1 þ giÞQ4

i¼1 Gð1 � g1 þ g1 þ sÞ

þ 2x1�g2
Xg2�g1

s¼1

ð�1Þ1�sGðsÞx�sC21
0s

Y4
i¼2

Gð1 � g1 þ giÞ

Gð1� g1 þ gi � sÞ

þ 2ð�1Þg1þg2Gð1 � g1 þ g2Þ
Q4

i¼2 Gð1� g1 þ giÞQ4
i¼3 Gðgi � g2Þ

�
1

xg2 5F0 ½1; 1; 1þ g2 � g1; 1þ g2 � g3; 1þ g2 � g4�; ½ �;
1

x

� �
; ðA:32Þ

where z̄2ðxÞ can be obtained by substituting C2�
�� for C1�

�� in z2ðxÞ given by Eq. (A.24).
A.3. z4ðxÞ

Under this case c0 ¼ c00ðrþ g4 � 1Þ3 where c00 is an arbitrary constant independent of r:
For kXg4 � g1; the coefficient of ln3 x of Eq. (A.10) are calculated as

X1
k¼g4�1

f kðGÞx
rþkc0

 !
r¼1�g4

¼
c00ð�1Þ1þg1þg2þg3�g4Q3

i¼1 Gðg4 � giÞ
Q4

i¼2Gð1� g1 þ giÞ
z1ðxÞ; (A.33)

c00 is chosen to make the coefficient of z1ðxÞ equal to 1:

c00 ¼ ð�1Þ1þg1þg2þg3�g4
Y3
i¼1

Gðg4 � giÞ
Y4
i¼2

Gð1� g1 þ giÞ; (A.34)
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then

X1
k¼g4�g1

f kðGÞx
rþkg3

k

 !
r¼1�g4

¼
X1
s¼0

f sðGÞx
rþg4�g1þsg3

s

 !
r¼1�g4

¼ x1�g1
X1
s¼0

½ðC30
0s Þ

3
þC30

2s þ 3C30
0s ðC

30
1s þ 3p2Þ�xs

�
Y4
i¼1

Gð1� g1 þ giÞ

Gð1 � g1 þ gi þ sÞ
; ðA:35Þ

X1
k¼g4�g1

f kðGÞx
rþkg2

k

 !
r¼1�g4

¼
X1
s¼0

f sðGÞx
rþg4�g1þsg2

s

 !
r¼1�g4

¼ x1�g1
X1
s¼0

½ðC30
0s Þ

2
þC30

1s þ 3p2�xs
Y4
i¼1

Gð1 � g1 þ giÞ

Gð1� g1 þ gi þ sÞ
; ðA:36Þ

X1
k¼g4�g1

f kðGÞx
rþkg1

k

 !
r¼1�g4

¼
X1
s¼0

f sðGÞx
rþg4�g1þsg1

s

 !
r¼1�g4

¼ x1�g1
X1
s¼0

C30
0s xs

Y4
i¼1

Gð1 � g1 þ giÞ

Gð1� g1 þ gi þ sÞ
: ðA:37Þ

When g4 � g2pkpg4 � g1 � 1;

Xg4�g1�1

k¼g4�g2

f kðGÞx
rþkg1

k

 !
r¼1�g4

¼
Xg2�g1

s¼1

f sðGÞx
rþg4�g1�sg1

s

 !
r¼1�g4

¼
Y4
i¼2

ðgi � g1Þ
1

xg1

�5F0 ½1; 1; 1þ g1 � g2; 1þ g1 � g3; 1þ g1 � g4�; ½ �
1

x

� �
; ðA:38Þ

Xg4�g1�1

k¼g4�g2

f kðGÞx
rþkg2

k

 !
r¼1�g4

¼
Xg2�g1

s¼1

f sðGÞx
rþg4�g1�sg2

s

 !
r¼1�g4

¼ 2x1�g1
Xg2�g1

s¼1

GðsÞð�1Þ1�sx�sC31
0s

Y4
i¼2

Gð1 � g1 þ giÞ

Gð1� g1 þ gi � sÞ
; ðA:39Þ
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Xg4�g1�1

k¼g4�g2

f kðGÞx
rþkg3

k

 !
r¼1�g4

¼
Xg2�g1

s¼1

f sðGÞx
rþg4�g1�sg3

s

 !
r¼1�g4

¼ 3x1�g1
Xg2�g1

s¼1

GðsÞð�1Þ1�sx�s½ðC31
0s Þ

2
þC31

1s þ 2p2�

�
Y4
i¼2

Gð1 � g1 þ giÞ

Gð1� g1 þ gi � sÞ
: ðA:40Þ

When g4 � g3pkpg4 � g2 � 1;

Xg4�g2�1

k¼g4�g3

f kðGÞx
rþkg2

k

 !
r¼1�g4

¼
Xg3�g2

s¼1

f sðGÞx
rþg4�g2�sg2

s

 !
r¼1�g4

¼ 2ð�1Þg1þg2Gð1� g1 þ g2Þ
Q4

i¼2 Gð1 � g1 þ giÞQ4
i¼3 Gðgi � g2Þ

�
1

xg2 5F0 ½1; 1; 1þ g2 � g1; 1þ g2 � g3; 1þ g2 � g4�; ½ �;
1

x

� �
; ðA:41Þ

Xg4�g2�1

k¼g4�g3

f kðGÞx
rþkg3

k

 !
r¼1�g4

¼
Xg3�g2

s¼1

f sðGÞx
rþg4�g2�sg3

s

 !
r¼1�g4

¼ 6ð�1Þg1þg2x1�g2
Y4
i¼2

Gð1� g1 þ giÞ

�
Xg3�g2

s¼1

Gðg2 � g1 þ sÞGðsÞx�sC32
0sQ4

i¼3Gð1þ gi � g2 � sÞ
: ðA:42Þ

When 0pkpg4 � g3 � 1;

Xg4�g3�1

k¼0

f kðGÞx
rþkg3

k

 !
r¼1�g4

¼
Xg4�g3

s¼1

f kðGÞx
rþg4�g3�sg3

s

 !
r¼1�g4

¼ 6ð�1Þg1þg2

Q4
i¼2 Gð1 � g1 þ giÞ

Q2
i¼1 Gð1 � gi þ g3Þ

Gðg4 � g3Þ

�
1

xg3 5F0 ½1; 1; 1þ g3 � g1; 1þ g3 � g2; 1þ g3 � g4�; ½ �;
1

x

� �
ðA:43Þ
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then

z4ðxÞ ¼
X1
k¼0

f kðGÞx
r4þkðc0 ln3 x þ 3g1

k ln2 x þ 3g2
k ln x þ g3

kÞ

¼ z1ðxÞln
3 x � 3¯̄z2ðxÞln

2 x þ 3z̄3ðxÞ ln x

þ 6ð�1Þg1þg2

Q4
{¼2 Gð1 � g1 þ giÞ

Q2
{¼1 Gð1� gi þ g3Þ

Gðg4 � g3Þ

�
1

xg3 5F0 ½1; 1; 1 þ g3 � g1; 1 þ g3 � g2; 1 þ g3 � g4�; ½ �;
1

x

� �

þ 6ð�1Þg1þg2x1�g2
Y4
i¼2

Gð1 � g1 þ giÞ
Xg3�g2

s¼1

Gðg2 � g1 þ sÞGðsÞx�sC32
0sQ4

i¼3 Gð1 þ gi � g2 � sÞ

þ 3x1�g1
Xg2�g1

s¼1

GðsÞð�1Þ1�sx�s½ðC31
0s Þ

2
þC31

1s þ 2p2�
Y4
i¼2

Gð1 � g1 þ giÞ

Gð1� g1 þ gi � sÞ

þ x1�g1
X1
s¼0

xs½ðC30
0s Þ

3
þC30

2s þ 3C30
0s ðC

30
1s þ 3p2Þ�

Y4
i¼1

Gð1 � g1 þ giÞ

Gð1� g1 þ gi þ sÞ
; ðA:44Þ

where ¯̄z2ðxÞ can be obtained by substituting C3�
�� for C1�

�� in z2ðxÞ given by Eq. (A.24) and z̄3ðxÞ can
be obtained by substituting C3�

�� and 3p2 for C2�
�� and 2p2 respectively in z3ðxÞ given by Eq. (A.32).

A.4. Convergence conditions

For checking the convergence condition of logarithmic solutions z2ðxÞ; z3ðxÞ and z4ðxÞ given by
Eqs. (A.24), (A.32) and (A.44), respectively, the infinite series included in z2ðxÞ; z3ðxÞ and z4ðxÞ
expressed by Eqs. (A.19), (A.27), (A.28), (A.35), (A.36) and (A.37) will be checked. These infinite
series can be expressed in the general form:

x1�g1
X1
s¼0

xs
X

C��
�s

h iY4
i¼1

Gð1� g1 þ giÞ

Gð1 � g1 þ gi þ sÞ
; (A.45)

where
P

C��
�s is the summation of polygamma functions. Let us denotes the s term in Eq. (A.45)

and define

d ¼ lim
s!1

usþ1

us

¼ lim
s!1

P
C��

�sþ1P
C��

�s

xQ4
i¼1ð1 � g1 þ gi þ sÞ

: (A.46)

Since lims!1 ð
P

C��
�sþ1=

P
C��

�s Þ ¼ 1; hence if x is finite, do1: Then the infinite series in
Eq. (A.45) converge for all finite x (i.e. all cases except forma2).

To illustrate, C10
0s in relation to

P
C��

�s in Eq. (A.19) will be used as an example to prove that
lims!1ð

P
C��

�sþ1=
P

C��
�s Þ ¼ 1: The proofs for other

P
C��

�s terms appearing in Eqs. (A.27),
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(A.28), (A.35), (A.36), and (A.37) follow the same procedure. C10
0s can be expressed according to

Eq. (A.11) as

C10
0s ¼

X4

t¼2

j0ð1 � g2 þ gtÞ þ j0ðg2 � g1Þ �
X4

t¼1

j0ð1 � g1 þ gt þ sÞ: (A.47)

Since

jnðzÞ ¼ ð�1Þnþ1n!
X1
k¼0

1

ðz þ kÞnþ1
; (A.48)

C10
0s ¼

X1
k¼0

X4

t¼1

1

1 � g1 þ gt þ s þ k
�
X4

t¼2

1

1� g2 þ gt þ k
�

1

g2 � g1 þ k

" #
; (A.49)

then

lim
s!1

C10
0sþ1

C10
0s

¼ 1: (A.50)
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